Notícies d'astronomia

60 Years Ago: Lunar Landing Research Vehicle Takes Flight

NASA test pilot Joe Walker took the Lunar Landing Research Vehicle (LLRV) for its first spin 60 years ago today. NASA used the LLRV, also known as the flying bedstead, to train Apollo astronauts for the descent to the Moon's surface.

60 Years Ago: Lunar Landing Research Vehicle Takes Flight

NASA

NASA pilot Joe Walker sits in the pilot’s platform of the Lunar Landing Research Vehicle (LLRV) number 1 on Oct. 30, 1964. The LLRV and its successor the Lunar Landing Training Vehicle (LLTV) provided the training tool to simulate the final 200 feet of the descent to the Moon’s surface.

The LLRVs, humorously referred to as flying bedsteads, were used by NASA’s Flight Research Center, now NASA’s Armstrong Flight Research Center in California, to study and analyze piloting techniques needed to fly and land the Apollo lunar module in the moon’s airless environment.

Learn more about the LLRV’s first flight.

Image credit: NASA

NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Perseverance rover captured the silhouette of the Martian moon Phobos as it passed in front of the Sun on Sept. 30, 2024. The video shows the transit speeded up by four times, followed by the eclipse in real time. NASA/JPL-Caltech/ASU/MSSS

The tiny, potato-shaped moon Phobos, one of two Martian moons, cast a silhouette as it passed in front of the Sun, creating an eye in Mars’ sky.

From its perch on the western wall of Mars’ Jezero Crater, NASA’s Perseverance rover recently spied a “googly eye” peering down from space. The pupil in this celestial gaze is the Martian moon Phobos, and the iris is our Sun.

Captured by the rover’s Mastcam-Z on Sept. 30, the 1,285th Martian day of Perseverance’s mission, the event took place when the potato-shaped moon passed directly between the Sun and a point on the surface of Mars, obscuring a large part of the Sun’s disc. At the same time that Phobos appeared as a large black disc rapidly moving across the face of the Sun, its shadow, or antumbra, moved across the planet’s surface.

Astronomer Asaph Hall named the potato-shaped moon in 1877, after the god of fear and panic in Greek mythology; the word “phobia” comes from Phobos. (And the word for fear of potatoes, and perhaps potato-shaped moons, is potnonomicaphobia.) He named Mars’ other moon Deimos, after Phobos’ mythological twin brother.

Roughly 157 times smaller in diameter than Earth’s Moon, Phobos is only about 17 miles (27 kilometers) at its widest point. Deimos is even smaller.

Rapid Transit

Because Phobos’ orbit is almost perfectly in line with the Martian equator and relatively close to the planet’s surface, transits of the moon occur on most days of the Martian year. Due to its quick orbit (about 7.6 hours to do a full loop around Mars), a transit of Phobos usually lasts only 30 seconds or so.

This is not the first time that a NASA rover has witnessed Phobos blocking the Sun’s rays. Perseverance has captured several Phobos transits since landing at Mars’ Jezero Crater in February 2021. Curiosity captured a video in 2019. And Opportunity captured an image in 2004.

By comparing the various images, scientists can refine their understanding of the moon’s orbit to learn how it’s changing. Phobos is getting closer to Mars and is predicted to collide with it in about 50 million years.

More About Perseverance

Arizona State University leads the operations of the Mastcam-Z instrument, working in collaboration with Malin Space Science Systems in San Diego, on the design, fabrication, testing, and operation of the cameras, and in collaboration with the Niels Bohr Institute of the University of Copenhagen on the design, fabrication, and testing of the calibration targets.

A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).

Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.

NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.

For more about Perseverance:

https://mars.nasa.gov/mars2020

News Media Contacts

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

2024-150

Share Details Last Updated Oct 30, 2024 Related Terms Explore More 2 min read NASA Brings Drone and Space Rover to Air Show Article 17 hours ago 3 min read La NASA lleva un dron y un rover espacial a un espectáculo aéreo Article 17 hours ago 4 min read NASA Technologies Named Among TIME Inventions of 2024 Article 18 hours ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

NASA to Launch Innovative Solar Coronagraph to Space Station

5 min read

NASA to Launch Innovative Solar Coronagraph to Space Station

NASA’s Coronal Diagnostic Experiment (CODEX) is ready to launch to the International Space Station to reveal new details about the solar wind including its origin and its evolution.

Launching in November 2024 aboard SpaceX’s 31st commercial resupply services mission, CODEX will be robotically installed on the exterior of the space station. As a solar coronagraph, CODEX will block out the bright light from the Sun’s surface to better see details in the Sun’s outer atmosphere, or corona.

In this animation, the CODEX instrument can be seen mounted on the exterior of the International Space Station. For more CODEX imagery, visit https://svs.gsfc.nasa.gov/14647. CODEX Team/NASA

“The CODEX instrument is a new generation solar coronagraph,” said Jeffrey Newmark, principal investigator for the instrument and scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It has a dual use — it’s both a technology demonstration and will conduct science.”

This coronagraph is different from prior coronagraphs that NASA has used because it has special filters that can provide details of the temperature and speed of the solar wind. Typically, a solar coronagraph captures images of the density of the plasma flowing away from the Sun. By combining the temperature and speed of the solar wind with the traditional density measurement, CODEX can give scientists a fuller picture of the wind itself.

“This isn’t just a snapshot,” said Nicholeen Viall, co-investigator of CODEX and heliophysicist at NASA Goddard. “You’re going to get to see the evolution of structures in the solar wind, from when they form from the Sun’s corona until they flow outwards and become the solar wind.”

The CODEX instrument will give scientists more information to understand what heats the solar wind to around 1.8 million degrees Fahrenheit — around 175 times hotter than the Sun’s surface — and sends it streaming out from the Sun at almost a million miles per hour.

Team members for CODEX pose with the instrument in a clean facility during initial integration of the coronagraph with the pointing system. CODEX Team/NASA

This launch is just the latest step in a long history for the instrument. In the early 2000s and in August 2017, NASA scientists ran ground-based experiments similar to CODEX during total solar eclipses. A coronagraph mimics what happens during a total solar eclipse, so this naturally occurring phenomena provided a good opportunity to test instruments that measure the temperature and speed of the solar wind.

In 2019, NASA scientists launched the Balloon-borne Investigation of Temperature and Speed of Electrons in the corona (BITSE) experiment. A balloon the size of a football field carried the CODEX prototype 22 miles above Earth’s surface, where the atmosphere is much thinner and the sky is dimmer than it is from the ground, enabling better observations. However, this region of Earth’s atmosphere is still brighter than outer space itself.

“We saw enough from BITSE to see that the technique worked, but not enough to achieve the long-term science objectives,” said Newmark.

Now, by installing CODEX on the space station, scientists will be able to view the Sun’s corona without fighting the brightness of Earth’s atmosphere. This is also a beneficial time for the instrument to launch because the Sun has reached its solar maximum phase, a period of high activity during its 11-year cycle.

“The types of solar wind that we get during solar maximum are different than some of the types of wind we get during solar minimum,” said Viall. “There are different coronal structures during this time that lead to different types of solar wind.”

The CODEX coronagraph is shown during optical alignment and assembly. CODEX Team/NASA

This coronagraph will be looking at two types of solar wind. In one, the solar wind travels directly outward from our star, pulling the magnetic field from the Sun into the heliosphere, the bubble that surrounds our solar system. The other type of solar wind forms from magnetic field lines that are initially closed, like a loop, but then open up.

These closed field lines contain hot, dense plasma. When the loops open, this hot plasma gets propelled into the solar wind. While these “blobs” of plasma are present throughout all of the solar cycle, scientists expect their location to change because of the magnetic complexity of the corona during solar maximum. The CODEX instrument is designed to see how hot these blobs are for the first time.

The coronagraph will also build upon research from ongoing space missions, such as the joint ESA (European Space Agency) and NASA mission Solar Orbiter, which also carries a coronagraph, and NASA’s Parker Solar Probe. For example, CODEX will look at the solar wind much closer to the solar surface, while Parker Solar Probe samples it a little farther out. Launching in 2025, NASA’s Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission will make 3D observations of the Sun’s corona to learn how the mass and energy there become solar wind.

By comparing these findings, scientists can better understand how the solar wind is formed and how the solar wind changes as it travels farther from the Sun. This research advances our understanding of space weather, the conditions in space that may interact with Earth and spacecraft.

“Just like understanding hurricanes, you want to understand the atmosphere the storm is flowing through,” said Newmark. “CODEX’s observations will contribute to our understanding of the region that space weather travels through, helping improve predictions.”

The CODEX instrument is a collaboration between NASA’s Goddard Space Flight Center and the Korea Astronomy and Space Science Institute with additional contribution from Italy’s National Institute for Astrophysics.

By Abbey Interrante
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

Oct 30, 2024

Related Terms Explore More

3 min read Buckle Up: NASA-Funded Study Explores Turbulence in Molecular Clouds

Article


2 hours ago

4 min read New NASA Instrument for Studying Snowpack Completes Airborne Testing

Article


1 day ago

2 min read New Project Invites You To Do Martian Cloud Science with NASA

Article


1 day ago

Keep Exploring Discover More Topics From NASA

Missions


Humans in Space


Climate Change


Solar System

NASA Brings Drone and Space Rover to Air Show

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) About 20,000 guests visited NASA’s tent at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024. NASA

Lee esta historia en Español aquí.

In September, the three NASA centers in California came together to share aerospace innovations with thousands of guests at the Miramar Air Show in San Diego, California. Agency experts talked about the exciting work NASA does while exploring the secrets of the universe for the benefit of all.

Under a large tent near the airfield, guests perused exhibits from different centers and projects, like a model of the Innovator rover or the Alta-X drone, from Sept. 27 through 29. Agency employees from NASA’s Armstrong Flight Research Center in Edwards, California; Ames Research Center in Moffett Field, California; and Jet Propulsion Laboratory (JPL) in Southern California guided guests through tours and presentations and shared messages about NASA missions.

“The airshow is about the people just as much as it is about the aircraft and technology,” said Derek Abramson, chief engineer for the Subscale Flight Research Laboratory at NASA Armstrong. “I met many new people, worked with an amazing team, and developed a comradery with other NASA centers, talking about what we do here as a cohesive organization.”

Experts like flight controls engineer Felipe Valdez shared the NASA mission with air show guests, and explained the novelty of airborne instruments like the Alta-X drone at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA

On Sept. 29, pilots from Armstrong joined the event to take photos with guests and answer questions from curious or enthusiastic patrons. One air show guest had a special moment with NASA pilot Jim Less.

“One of my favorite moments was connecting with a young man in his late teens who stopped by the exhibit tent numerous times, all in hopes of being able to meet Jim Less, our X-59 pilot,” said Kevin Rohrer, chief of Communications at NASA Armstrong. “It culminated with a great conversation with the two and Jim [Less] autographing a model of the X-59 aircraft the young man had been carrying around.”

“I look forward to this tradition continuing, if not at this venue, at some other event in California,” Rohrer continued. “We have a lot of minds hungry and passionate to learn more about all of NASA missions.”

The Miramar Air Show is an annual event that happens at the Miramar Air Base in San Diego, California.

Professionals like Leticha Hawkinson, center right, and Haig Arakelian, center left, shared learning and career opportunities for NASA enthusiasts visiting the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA Share Details Last Updated Oct 30, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms Explore More 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse Article 16 hours ago 3 min read La NASA lleva un dron y un rover espacial a un espectáculo aéreo Article 17 hours ago 4 min read NASA Technologies Named Among TIME Inventions of 2024 Article 18 hours ago Keep Exploring Discover More Topics From NASA

Armstrong Flight Research Center

Aircraft Flown at Armstrong

Armstrong People

Armstrong Capabilities & Facilities

La NASA lleva un dron y un rover espacial a un espectáculo aéreo

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Aproximadamente 20,000 visitantes pasaron por la carpa de la NASA en el Espectáculo Aéreo de Miramar, celebrado en San Diego, California, entre el 27 y el 29 de septiembre de 2024.NASA

Read this story in English here.

En septiembre, los tres centros de la NASA en California se reunieron para compartir innovaciones aeroespaciales con miles de asistentes en el Espectáculo Aéreo de Miramar, en San Diego, California. Expertos de la agencia hablaron del apasionante trabajo que realiza la NASA mientras explora los secretos del universo en beneficio de todos.

Bajo una gran carpa cerca del aeródromo, los invitados exploraron exposiciones de diferentes centros y proyectos, como una maqueta del rover Innovator o el avión no tripulado Alta-X, desde el 27 al 29 de septiembre. Empleados de la agencia provenientes del Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, del Centro de Investigación Ames en Moffett Field, California y del Laboratorio de Propulsión a Chorro (JPL por sus siglas en inglés) en el sur de California guiaron a los visitantes a través de visitas y presentaciones y compartieron mensajes sobre las misiones de la NASA.

“El espectáculo aéreo es tanto sobre la gente como sobre las aeronaves y la tecnología”, dijo Derek Abramson, ingeniero jefe del Laboratorio de Investigación de Vuelo a Subescala de NASA Armstrong. “Conocí a mucha gente nueva, trabajé con un equipo increíble y formé un gran vínculo con otros centros de la NASA, hablando de lo que hacemos aquí como una organización cohesiva”.

Expertos como el ingeniero de controles de vuelo Felipe Valdez compartieron la misión de la NASA con los visitantes del espectáculo aéreo y explicaron la novedad de los instrumentos aéreos como el dron Alta-X en el Espectáculo Aéreo de Miramar en San Diego, California, del 27 al 29 de septiembre de 2024.NASA

El 29 de septiembre, los pilotos de Armstrong se unieron al evento para tomarse fotos con los invitados y responder a las preguntas de los curiosos o entusiastas asistentes. Un visitante del espectáculo aéreo tuvo un momento especial con el piloto de la NASA Jim Less.

“Uno de mis momentos favoritos fue conectar con un joven en sus útimos años de adolescencia que se detuvo numerosas veces en la carpa de exhibición, con la esperanza de poder conocer a Jim Less, nuestro piloto del X-59”, dijo Kevin Rohrer, jefe de comunicaciones de NASA Armstrong. “Culminó con una gran conversación entre los dos y con Jim [Less] autografiando un modelo del avión X-59 que el joven traía consigo”.

“Espero que esta tradición continúe, si no en este mismo lugar, en algún otro evento en California”, continuó Rohrer. “Tenemos muchas mentes hambrientas y apasionadas por aprender más sobre todas las misiones de la NASA”.

El Espectáculo Aéreo de Miramar es un evento anual que tiene lugar en la Base Aérea de Miramar, en San Diego, California.

Profesionales como Leticha Hawkinson, en el centro a la derecha, y Haig Arakelian, en el centro a la izquierda, compartieron oportunidades de aprendizaje y carrera para los entusiastas de la NASA que visitaron el Espectáculo Aéreo de Miramar en San Diego, California, del 27 al 29 de septiembre de 2024.NASA

Articulo traducido por: Elena Aguirre

Share Details Last Updated Oct 30, 2024 EditorDede DiniusContactElena Aguirreelena.aguirre@nasa.govLocationArmstrong Flight Research Center Related Terms Explore More 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse Article 16 hours ago 2 min read NASA Brings Drone and Space Rover to Air Show Article 17 hours ago 4 min read NASA Technologies Named Among TIME Inventions of 2024 Article 18 hours ago Keep Exploring Discover More Topics From NASA

Armstrong Flight Research Center

Aircraft Flown at Armstrong

Armstrong People

Armstrong Capabilities & Facilities

A Particular Lenticular Cloud

New Zealand’s stunning scenery has famously provided the backdrop for fictional worlds in fantasy films. A unique cloud that forms over the Otago region of the country’s South Island also evokes the otherworldly, while very much existing in reality.

An Opportunity to Study Water

Space science is fun! NASA astronaut and Expedition 72 Flight Engineer Don Pettit fills this sphere of water with food coloring creating a Jupiter-like effect in the microgravity environment of the International Space Station.

Hubble Sees a Celestial Cannonball

The spiral galaxy in this NASA/ESA Hubble Space Telescope image is IC 3225. It looks remarkably as if it was launched from a cannon, speeding through space like a comet with a tail of gas streaming from its disk behind it.

An Orange Blue Moon

A super blue moon rises above NASA's Kennedy Space Center in Florida on Monday, Aug. 18, 2024. Although not actually appearing blue, as the third full moon in a season with four full moons, this is called a “blue” moon.

Melbourne City Lights

The city lights of Melbourne, Australia are pictured from the International Space Station as it orbited 271 miles above.

A Dazzling Supernova

Nearly four decades ago, astronomers spotted one of the brightest exploding stars in more than 400 years. The titanic supernova, called Supernova 1987A (SN 1987A), blazed with the power of 100 million suns for several months following its discovery on Feb. 23, 1987.

On the Road Again…

A drone camera captures NASA’s mobile launcher 1 atop the agency’s crawler-transporter 2 moving from Launch Complex 39B to the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Thursday, Oct. 3, 2024. The mobile launcher has been at the launch pad since August 2023 undergoing upgrades and tests in preparation for NASA’s Artemis II mission.

NASA Michoud Gets a Rare Visitor

The Oort Cloud comet, called C/2023 A3 Tsuchinshan-ATLAS, passes over Southeast Louisiana near New Orleans, home of NASA’s Michoud Assembly Facility, Sunday, Oct. 13, 2024. The comet is making its first appearance in documented human history; it was last seen in the night sky 80,000 years ago. The Tsuchinshan-ATLAS comet made its first close pass by Earth in mid-October and will remain visible to viewers in the Northern Hemisphere just between the star Arcturus and planet Venus through early November.

Imagining the Future

An unidentified illustration of NASA's space shuttle. The space shuttle fleet flew 135 missions and helped construct the International Space Station between the first launch on April 12, 1981 and the final landing on July 21, 2011. There were five orbiters: Columbia, Challenger, Discovery, Atlantis and Endeavour.

Europa Clipper Begins Journey to Jupiter’s Icy Moon

A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 12:06 p.m. EDT on Monday, Oct. 14, 2024. After launch, the spacecraft plans to fly by Mars in February 2025, then back by Earth in December 2026, using the gravity of each planet to increase its momentum. With help of these “gravity assists,” Europa Clipper will achieve the velocity needed to reach Jupiter in April 2030.

Ancient Comet Makes Appearance

Comet C/2023 A3 (Tsuchinshan-ATLAS) was about 44 million miles away from Earth in this photograph from the International Space Station as it orbited 272 miles above the South Pacific Ocean southeast of New Zealand just before sunrise on Sept. 28, 2024.

Ring Around the Mountain

On New Zealand’s North Island, a conical snow-capped volcano ringed by dark green forest rises above dairy pasture. The often-snowcapped peak of Mount Taranaki is the centerpiece of Egmont National Park. A circular piece of land—with a 9.6-kilometer (6-mile) radius from the volcano’s summit—was first formally protected as a forest reserve in 1881. With some subsequent additions, it became New Zealand’s second national park in 1900.

Lead Astromaterial Curation Engineer Salvador Martinez III

"It took years but it felt like all of the sudden, I was here and everything, the entire time, was preparing me for my role on the OSIRIS-REx mission. Now, I share a place in history next to a Curation team full of the most talented, intelligent and hard-working individuals in the world and all that we have accomplished is, and will be, a part of NASA forever." —Salvador Martinez III, Lead Astromaterial Curation Engineer, Jacobs Technology, NASA's Johnson Space Center

NASA’s Earth Information Center at the Smithsonian

NASA Administrator Bill Nelson, left, and Smithsonian Museum of Natural History, Sant Director, Kirk Johnson, preview the Earth Information Center at the Smithsonian National Museum of Natural History, in Washington, Monday, Oct. 7, 2024. The exhibit includes a video wall displaying Earth science data visualizations and videos, an interpretive panel showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet.
Contingut sindicat